Mercury Control by EPRI MerCAP™ Process

MEGA Symposium August 29, 2006

Juliana Kyle, Southern Company Kevin Fisher, Apogee Scientific

Presentation Outline

Project Background

- Project objectives

Host Site 2

- Description
- Planned tests
- Project status
- Initial results
- Future plans

Host Site 1

- Background
- Discussion of recent work and final results
- Conclusions

Project Background

- Financial Assistance Program DE-FC26-03NT41993
- Two Test Sites
 - Georgia Power Plant Yates Unit 1
 - Great River Energy Stanton Station Unit 10

Project Team

Pierina Noceti (COR) Bill Aljoe

Juliana Kyle Ken McBee Mark Berry

Steve Smokey Mark Strohfus

Carl Richardson
Tom Machalek

Apogee Scientific

Tim Ebner
Kevin Fisher
Rick Slye
Trevor Ley

Sharon Sjostrom

Project Background

- Fixed sorbent structures to adsorb mercury
 - Gold substrates

Project Background

- Concept tested using small-scale probes since 1999
- Full scale tests at two sites downstream of scrubbers
 - Plant Yates Unit 1 (on-going)
 - 1 MWe slipstream fitted with gold plates
 - Wet Scrubber (Chiyoda CT-121 jet bubbling reactor)
 - Stanton Unit 10 (completed)
 - Full-scale baghouse compartment retrofitted with gold plates
 - Dry Scrubber

Project Objectives

Evaluate MerCAPTM technology downstream of wet and dry scrubbers

- Removal performance & variability
 - Optimal process conditions
- Regeneration
 - Thermal
 - Chemical
- Economic viability

Georgia Power Plant Yates Unit 1

Boiler					
Туре	CE Tangential Fired				
Nameplate (MW)	100				
Coal					
Туре	Eastern Bituminous				
Sulfur (wt %, day)	1.0				
Mercury (mg/kg, dry)	0.10				
Chloride (mg/kg, dry)	300-1400				
ESP					
Туре	Cold-Side				
SCRUBBER					
Туре	Chiyoda CT-121				
Scrubber Outlet Temp. (°F)	130				
NO _x Controls	Low NOx Burners				
SO ₂ Controls	Chiyoda CT-121 wet scrubber				

Plant Yates Unit 1 MerCAPTM Configuration

MerCAP™ Installed at Plant Yates Unit 1

MerCAP™ Reactor

Planned Tests

Baseline Monitoring

Determine Effects (if any) of reactor housing on mercury

Monitoring with gold substrates

- Initial testing after installation
- 6 months continuous operation
- Mercury measurements approximately every 40 days

Substrate Regeneration

- Thermal
- Chemical (acid rinse)

Project Status – Plant Yates

- Baseline Monitoring
 - No effect of reactor housing on mercury
- Initial Mercury Measurements
 - Showed high mercury removal possible
- Fan Failure
 - Acidic Flue Gas backed up through system
 - Corroded substrates
- System re-routed to avoid high pressure drop
 - Substrates replaced and restarted July 2006

Initial Results (Original Substrates)

Results (New Substrates)

Results (New Substrates)

	Flow Rate	Gold Length	Inlet Hg	Outlet Hg		Normalized Removal		
Date	(acfm)	(inches)	(mg/Nm³ @3%O ₂)	(mg/Nm³ @3%O ₂)	% Hg Removal	(%/gold plate/acfm*10^6)		
7/13/2006	3600	36	3.61	3.08	15%	0.17		
7/13/2006	2700	36	3.51	3.07	13%	0.19		
7/14/2006	2700	36	4.23	3.88	8%	0.13		
7/14/2006	1900	36	3.98	3.58	10%	0.22		
7/14/2006	1300	36	3.98	3.61	9%	0.29		
7/15/2006	1300	36	2.03	1.96	3%	0.11		
7/15/2006	2700	36	4.23	4.11	3%	0.05		
8/4/2006	2700	36	6.19	6.06	2%	0.03		
8/18/2006	1300	12	3.53	3.30	6%	0.20		

Summary – Plant Yates

- Initial Results indicate high level of mercury removal is possible
- Acidic conditions in flue gas corrode gold and stainless steel substrates
- Material build-up on gold surface inhibits mercury adsorption
 - Possibly gypsum fines that pass through the mist eliminator
 - Effect of flue gas flow rate not evident when plates are fouled
 - Wash system demonstrated improvement in mercury removal in short section of gold
- Ontario Hydro confirmed results seen with SCEMs

Future Plans for MerCAPTM at Plant Yates

- 6 months continuous operation
 - Parametric tests
 - **Wash frequency**
 - Flue gas flow rate / mass transfer
- Analysis of fouling material
 - Determine best way to wash substrates

GRE Stanton Station – FF/SDA Installation Background

- First Phase SDA/FF Equipped Unit
- Host Unit Great River Energy's Stanton Station Unit 10
- First substrates installed in August of 2003 in Clean Air Plennum of Baghouse Compartment 6
- Initial removal high (~70-90%), removal stabilized near 35 40%
- Results on North Dakota Lignite operation showed 3 months of service at 35 40% removal
- Results on PRB operation showed varied removal depending on gas temperature and lime/slurry feed to SDA
- Array removed from host unit in July of this year
- Over 22 months continuous gas treatment service time
- Additional evaluations and tests funded by Great River Energy and EPRI

GRE Stanton Station – FF/SDA Installation Recent Work

- Geometry parametric testing
- Several geometry variations investigated including:
 - Varied length
 - Varied plate spacing
 - Varied orientation in flow
- Results indicate that removal does not directly correlate to active length
- Mass-Transfer not limiting
- Mechanism under investigation

GRE Stanton Station – FF/SDA Installation Recent Work

Date	Description of Geometry/Duct	Removal (%)	Duct Temp (F)	Lime Feed (GPM)	Comments	
	Duct 1 - 10' Active Length 1-inch Plate Spacing	39.2				
4/25/2006	Duct 2 - Empty	202.8	21	2-day Average		
	Duct 3 - 40 Plates Perpendicular to Flow	4.7	202.0	۷۱	2-day Average	
	Duct 4 - 8' Active Length, Alternate Material	9.7				
	Duct 1 - 10' Active Length 1-inch Plate Spacing	36.2	1		10-day Average	
5/5/2006	Duct 2 - 8' Active Length, Alternate Material	0		21.5		
5/5/2006	Duct 3 - 5 Plates Perpendicular to Flow	7.4	209.2	21.3		
	Duct 4 - 4' Active Length 1-inch Plate Spacing 26.5					
7/7/2006	Duct 1 - 10' Active Length 1-inch Acid Washed	54.6			1-Day Average	
	Duct 2 - 2' Active Length 1/2-inch Plate Spacing	56.5		N/A		
	Duct 3 - 2' Active Length 1-inch Plate Spacing	25.8	∠10.0	IN/A		
	Duct 4 - 4' Active Length 1-inch Plate Spacing	30.6				

GRE Stanton Station – FF/SDA Installation Recent Work

- 22nd Month of service time
- Method 324 Measurements conducted to verify Hg CEM results
- Removal remains variable depending on gas temperature and lime/slurry feed-rate
- 40 50% removal observed after nearly 2 years of continuous treatment service

					Trap					
			Inlet Hg	Outlet Hg	Removal		% Diff	CEM	% Diff	CEM
Start Time	End Time	Trap ID	(Trap)	(Trap)	(%)	CEM Inlet	(inlet)	Outlet	(outlet)	Remvoal
7/7/2006 10:29	7/7/2006 10:59	2	4.72	3.59	24.01	4.98	-5.55	3.82	-6.47	23.34
7/7/2006 12:20	7/7/2006 12:50	3	5.36	2.87	46.50	4.83	9.97	2.85	0.85	41.08
7/7/2006 13:05	7/7/2006 13:30	4	5.00			4.94	1.10	3.00		
7/7/2006 13:45	7/7/2006 14:22	5	5.36	3.61	32.56	4.94	7.68	3.45	4.49	30.24
7/7/2006 14:33	7/7/2006 15:05	6	5.94	4.41	25.76	5.09	14.28	3.59	18.70	29.59

GRE Stanton Station – FF/SDA Installation Recent Work

GRE Stanton Station – FF/SDA Installation Conclusions

- HerCAP™ Array has been removed from the GRE Stanton Station Unit 10 Baghouse.
- Nearly 2 years of continuous service and gas treatment time without regeneration
- Six regeneration cycles demonstrated on single substrate
- Acid pretreatment of substrate material increases mercury capture performance
- Removal performance varies with gas temperature and limestone/slurry feed-rate to SDA
- Removal performance does not directly correlate to active length of sorbent structure
- Indications that mercury capture may not be mass-transfer limited
- Final analysis of gold substrates pending

Questions...